On Equivalence of Super Log Sobolev and Nash Type Inequalities
نویسندگان
چکیده
We prove the equivalence of Nash type and super log Sobolev inequalities for Dirichlet forms. We also show that both inequalities are equivalent to Orlicz-Sobolev type inequalities. No ultracontractivity of the semigroup is assumed. It is known that there is no equivalence between super log Sobolev or Nash type inequalities and ultracontractivity. We discuss Davies-Simon’s counterexample as borderline case of this equivalence and related open problems.
منابع مشابه
Merging for inhomogeneous finite Markov chains, part II: Nash and log-Sobolev inequalities
We study time-inhomogeneous Markov chains with finite state spaces using Nash and Logarithmic-Sobolev inequalities, and the notion of cstability. We develop the basic theory of such functional inequalities in the time-inhomogeneous context and provide illustrating examples.
متن کاملStrong Logarithmic Sobolev Inequalities for Log-Subharmonic Functions
We prove an intrinsic equivalence between strong hypercontractivity (sHC) and a strong logarithmic Sobolev inequality (sLSI) for the cone of logarithmically subharmonic (LSH) functions. We introduce a new large class of measures, Euclidean regular and exponential type, in addition to all compactly-supported measures, for which this equivalence holds. We prove a Sobolev density theorem through L...
متن کاملLogarithmic Sobolev inequalities and Nash-type inequalities for sub-markovian symmetric semigroups
1 We study relationships between Logarithmic Sobolev inequalities with one parameter of Davies-Simon type, energy-entropy inequality, Nash-type inequality and Sobolev-type inequalities. The inequalities of Sobolev-type apply in the general setting of symmetric sub-Markovian semigroups (and some generalizations). We provide several examples of application of theses results for ultracontractive s...
متن کاملEstimates of Semigroups and Eigenvalues Using Functional Inequalities
Boundedness properties of semigroups are studied by using general PoincaréSobolev type inequalities, from which Gross’ theorem on hyperboundedness and log-Sobolev inequality is extended. Some results hold also for nonsymmetric semigroups. For instance, a super-Poincaré inequality always imply an estimate of the corresponding semigroup. In particular, the log-Sobolev inequality implies the hyper...
متن کاملSuper Poincaré and Nash-type inequalities for Subordinated Semigroups
We prove that if a super-Poincaré inequality is satisfied by an infinitesimal generator −A of a symmetric contraction semigroup on L2 and that is contracting on L1, then it implies a corresponding super-Poincaré inequality for −g(A) for any Bernstein function g. We also study the converse of this statement. We prove similar results for Nash-type inequalities. We apply our results to Euclidean, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017